Buktikan bahwa: [tex]\displaystyle \left ( \frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right )^2=\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}+\frac{1}{(a-b)^2}[/tex]
Matematika
Anonyme
Pertanyaan
Buktikan bahwa:
[tex]\displaystyle \left ( \frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right )^2=\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}+\frac{1}{(a-b)^2}[/tex]
[tex]\displaystyle \left ( \frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right )^2=\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}+\frac{1}{(a-b)^2}[/tex]
1 Jawaban
-
Pertanyaan Lainnya